gogogo
Syndetics cover image
Image from Syndetics

CUDA application design and development [electronic book] / Rob Farber.

By: Contributor(s): Material type: TextTextPublication details: Waltham, MA : Morgan Kaufmann, c2012.Description: p. cmISBN:
  • 0123884268 (electronic bk.)
  • 9780123884268 (electronic bk.)
Subject(s): Genre/Form: Online resources:
Contents:
1. How to think in CUDA 2. Tools to build, debug and profile 3. The GPU performance envelope 4. The CUDA memory subsystems 5. Exploiting the CUDA execution grid 6. MultiGPU applications and scaling 7. Numerical CUDA, libraries and high-level language bindings 8. Mixing CUDA with rendering 9. High Performance Machine Learning 10. Scientific Visualization 11. Multimedia with OpenCV 12. Ultra Low-power Devices: Tegra.
Summary: As the computer industry retools to leverage massively parallel graphics processing units (GPUs), this book is designed to meet the needs of working software developers who need to understand GPU programming with CUDA and increase efficiency in their projects. CUDA Application Design and Development starts with an introduction to parallel computing concepts for readers with no previous parallel experience, and focuses on issues of immediate importance to working software developers: achieving high performance, maintaining competitiveness, analyzing CUDA benefits versus costs, and determining application lifespan. The book then details the thought behind CUDA and teaches how to create, analyze, and debug CUDA applications. Throughout, the focus is on software engineering issues: how to use CUDA in the context of existing application code, with existing compilers, languages, software tools, and industry-standard API libraries Using an approach refined in a series of well-received articles at Dr Dobb's Journal, author Rob Farber takes the reader step-by-step from fundamentals to implementation, moving from language theory to practical coding Includes multiple examples building from simple to more complex applications in four key areas: machine learning, visualization, vision recognition, and mobile computing Addresses the foundational issues for CUDA development: multi-threaded programming and the different memory hierarchy Includes teaching chapters designed to give a full understanding of CUDA tools, techniques and structure. Presents CUDA techniques in the context of the hardware they are implemented on as well as other styles of programming that will help readers bridge into the new material.
No physical items for this record

Enhanced descriptions from Syndetics:

As the computer industry retools to leverage massively parallel graphics processing units (GPUs), this book is designed to meet the needs of working software developers who need to understand GPU programming with CUDA and increase efficiency in their projects. CUDA Application Design and Development starts with an introduction to parallel computing concepts for readers with no previous parallel experience, and focuses on issues of immediate importance to working software developers: achieving high performance, maintaining competitiveness, analyzing CUDA benefits versus costs, and determining application lifespan.

The book then details the thought behind CUDA and teaches how to create, analyze, and debug CUDA applications. Throughout, the focus is on software engineering issues: how to use CUDA in the context of existing application code, with existing compilers, languages, software tools, and industry-standard API libraries.

Using an approach refined in a series of well-received articles at Dr Dobb's Journal, author Rob Farber takes the reader step-by-step from fundamentals to implementation, moving from language theory to practical coding.

Machine generated contents note: 1. How to think in CUDA 2. Tools to build, debug and profile 3. The GPU performance envelope 4. The CUDA memory subsystems 5. Exploiting the CUDA execution grid 6. MultiGPU applications and scaling 7. Numerical CUDA, libraries and high-level language bindings 8. Mixing CUDA with rendering 9. High Performance Machine Learning 10. Scientific Visualization 11. Multimedia with OpenCV 12. Ultra Low-power Devices: Tegra.

1. How to think in CUDA 2. Tools to build, debug and profile 3. The GPU performance envelope 4. The CUDA memory subsystems 5. Exploiting the CUDA execution grid 6. MultiGPU applications and scaling 7. Numerical CUDA, libraries and high-level language bindings 8. Mixing CUDA with rendering 9. High Performance Machine Learning 10. Scientific Visualization 11. Multimedia with OpenCV 12. Ultra Low-power Devices: Tegra.

As the computer industry retools to leverage massively parallel graphics processing units (GPUs), this book is designed to meet the needs of working software developers who need to understand GPU programming with CUDA and increase efficiency in their projects. CUDA Application Design and Development starts with an introduction to parallel computing concepts for readers with no previous parallel experience, and focuses on issues of immediate importance to working software developers: achieving high performance, maintaining competitiveness, analyzing CUDA benefits versus costs, and determining application lifespan. The book then details the thought behind CUDA and teaches how to create, analyze, and debug CUDA applications. Throughout, the focus is on software engineering issues: how to use CUDA in the context of existing application code, with existing compilers, languages, software tools, and industry-standard API libraries Using an approach refined in a series of well-received articles at Dr Dobb's Journal, author Rob Farber takes the reader step-by-step from fundamentals to implementation, moving from language theory to practical coding Includes multiple examples building from simple to more complex applications in four key areas: machine learning, visualization, vision recognition, and mobile computing Addresses the foundational issues for CUDA development: multi-threaded programming and the different memory hierarchy Includes teaching chapters designed to give a full understanding of CUDA tools, techniques and structure. Presents CUDA techniques in the context of the hardware they are implemented on as well as other styles of programming that will help readers bridge into the new material.

Electronic reproduction. Amsterdam : Elsevier Science & Technology, 2011. Mode of access: World Wide Web. System requirements: Web browser. Title from title screen (viewed on Nov. 2, 2011). Access may be restricted to users at subscribing institutions.

Table of contents provided by Syndetics

  • 1 First Programs and How to Think in CUDA
  • 2 CUDA for Machine Learning and Optimization
  • 3 The CUDA Tool Suite: Profiling a PCA/NLPCA Functor
  • 4 The CUDA Execution Model
  • 5 CUDA Memory
  • 6 Efficiently Using GPU Memory
  • 7 Techniques to Increase Parallelism
  • 8 CUDA for All GPU and CPU Applications
  • 9 Mixing CUDA and Rendering
  • 10 CUDA in a Cloud and Cluster Environments
  • 11 CUDA for Real Problems: Monte Carlo, Modeling, and More
  • 12 Application Focus on Live Streaming Video

Author notes provided by Syndetics

Rob Farber has served as a scientist in Europe at the Irish Center for High-End Computing as well as U.S. national labs in Los Alamos, Berkeley, and the Pacific Northwest. He has also been on the external faculty at the Santa Fe Institute, consultant to fortune 100 companies, and co-founder of two computational startups that achieved liquidity events. He is the author of "CUDA Application Design and Development" as well as numerous articles and tutorials that have appeared in Dr. Dobb's Journal and Scientific Computing, The Code Project and others.

Powered by Koha